A New Spiro-annelation Procedure: Intramolecular Decarboxylative Alkylation of β -Keto-esters

By Robert G. Eilerman and Brian J. Willis*
(Chemical Research Laboratories, Fritzsche Dodge and Olcott Inc., 76 Ninth Avenue,
New York, New York 10011)

Summary A new intramolecular decarboxylative alkylation route to spirocyclic ketones, and its application to

the synthesis of (\pm)- β -vetivone and (\pm)- β -vetispirene are described.

Although many known methods of spirocyclization involve intramolecular alkylation routes, there is need for an operationally simple procedure which avoids the use of a strong base. We report herein a regiospecific intramolecular alkylation of enolates, generated in situ by halide-induced non-hydrolytic decarboxylation² of ω -halogeno- β -ketoesters (1), which provides a convenient route to spirocyclic ketones (2) (Scheme 1).

$$[CH_{2}]_{n} - CH_{2}CI$$

$$[CH_{2}]_{n} - CH_{2}CI$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

$$[CH_{2}]_{n}$$

SCHEME 1.

Treating cycloalkanone carboxylates (1) with anhydrous lithium chloride (0.5 equiv.) in hexamethylphosphoramide at $125-140\,^{\circ}\mathrm{C}$ provided the corresponding spiro-annelated ketones (2) in good yield. The results of representative experiments are summarized in the Table. Similar results were obtained with N-methyl-2-pyrrolidone as solvent, but dimethylformamide (DMF) was less satisfactory. Cyclization of the keto-ester (3) proceeded equally well, providing the acetylcyclopentane (4) in 80% yield. Similarly, the lactone carboxylate (5) gave the spirolactone (6) in 69% yield. This is believed to be the most direct general route to 2-spirolactones presently available.

TABLE. Representative spirocyclization experiments.

Compound (1)	Reaction time/h	Yield of $(2)/\%^a$
a; n = 1, m = 1	1	64
b ; $n = 1$, $m = 3$	1	75
c; n = 2, m = 3	1	68
d; n = 3, m = 3	1.5	70
e; n = 8, m = 3	1.5	71 ^b

 a Yields reported are for isolated product. b M.p. 64—65 $^{\circ}\text{C}$ (lit. b 50—52 $^{\circ}\text{C}$).

This spiro-annelation procedure has been successfully applied to the construction of the spiro [4.5] decane skeleton.3 resulting in a new synthesis of β -vetivone and β -vetispirene, components of the oil obtained by steam distillation of the roots of Vetivera zizanioides. Thus, reaction of the ketoester (7)4 with 2-isopropylidene-1,4-dichlorobutane (sodium hydride-DMF, 3 h) afforded adduct (8) in 65% yield.† Decarboxylative spirocyclization of (8) gave the ketone (9) in 80% yield (9:1 mixture of epimers). Treatment of (9) with methyl-lithium afforded the allylic alcohol (10) which, without purification, was oxidized with pyridinium chlorochromate⁵ to give a mixture of (\pm) - β -vetivone (11a) and (\pm) -epi- β -vetivone (11b) (ratio 9:1) in 72% yield from (9). The alcohol (10) was also converted (toluene-p-sulphonic acid at 25 °C) into a mixture of (±)- β -vetispirene⁶ (12a) and its epimer (12b) (ratio 9:1) in 82% yield (Scheme 2).

(7) (8) (9) (10) (11)
$$\alpha_1 R^1 = Me, R^2 = Me$$
 $\beta_1 R^1 = Me, R^2 = Me$ $\beta_1 R^1 = Me, R^2 = Me$

SCHEME 2.

Application of the spirocyclization process to the Stork synthesis⁷ of β -vetivone resulted in an improved overall yield. The keto-ester (13) was treated with 2-isopropylidene-1,4-dichlorobutane (sodium hydride-DMF) to give (14) in 83% yield. Lithium chloride-induced decarboxy-

(13) (14) (15)
$$\alpha_{1} R^{1} = Me, R^{2} = Me$$

$$b_{1} R^{1} = Me, R^{2} = Me$$

 $[\]dagger$ All new compounds gave satisfactory i.r. and n.m.r. spectra, and microanalytical and/or mass spectral data in agreement with the assigned structures.

lation gave the spiroketone (15) (98%) as a 9:1 mixture of epimers, from which (15a) crystallized (m.p. 77-78 °C, from hexane) in 83% yield. Treating (15a) with methyllithium, followed by hydrolysis with 1m hydrochloric acid,

gave pure racemic β -vetivone (11a) (m.p. 49-50 °C, from hexane) in 87% yield.

(Received, 7th October 1980; Com. 1097.)

- ‡ The stereochemistry of (15a) was confirmed by analytical h.p.l.c. comparison with an authentic sample prepared by the method of Stork.7
 - ¹ A. P. Krapcho, Synthesis, 1974, 383.
- ² For examples of simple alkylations using a similar technique see (a) M. Asaoka, K. Miyake, and H. Takei, Chem. Lett., 1975, 1149, ² For examples of simple alkylations using a similar technique see (a) M. Asaoka, R. Miyake, and and (b) S. Takei and Y. Kawano, Tetrahedron Lett., 1975, 4389.

 ³ J. A. Marshall, S. F. Brady, and N. H. Anderson, Fortschr. Chem. Org. Naturst., 1974, 31, 283.

 ⁴ F. Bohlmann and K. Prezewowsky, Chem. Ber., 1964, 97, 1176.

 ⁵ W. G. Dauben and D. M. Michno, J. Org. Chem., 1977, 42, 682.

 ⁶ N. H. Anderson, M. S. Falcone, and D. D. Syrdal, Tetrahedron Lett., 1970, 1759.

 ⁷ G. Stork, R. L. Danheiser, and B. Ganem, J. Am. Chem. Soc., 1973, 95, 3414.

 ⁸ H. Nozaki, H. Yamamoto, and T. Mori, Can. J. Chem., 1969, 47, 1107.